Toll Genes Have an Ancestral Role in Axis Elongation
نویسندگان
چکیده
One of the key morphogenetic processes used during development is the controlled intercalation of cells between their neighbors. This process has been co-opted into a range of developmental events, and it also underlies an event that occurs in each major group of bilaterians: elongation of the embryo along the anterior-posterior axis [1]. In Drosophila, a novel component of this process was recently discovered by Paré et al., who showed that three Toll genes function together to drive cell intercalation during germband extension [2]. This finding raises the question of whether this role of Toll genes is an evolutionary novelty of flies or a general mechanism of embryonic morphogenesis. Here we show that the Toll gene function in axis elongation is, in fact, widely conserved among arthropods. First, we functionally demonstrate that two Toll genes are required for cell intercalation in the beetle Tribolium castaneum. We then show that these genes belong to a previously undescribed Toll subfamily and that members of this subfamily exhibit striped expression (as seen in Tribolium and previously reported in Drosophila [3-5]) in embryos of six other arthropod species spanning the entire phylum. Last, we show that two of these Toll genes are required for normal morphogenesis during anterior-posterior embryo elongation in the spider Parasteatoda tepidariorum, a member of the most basally branching arthropod lineage. From our findings, we hypothesize that Toll genes had a morphogenetic function in embryo elongation in the last common ancestor of all arthropods, which existed over 550 million years ago.
منابع مشابه
O-44: Characterisation of Monotreme CaseinsReveals Lineage Specific Expansion of an AncestralCasein Locus in Mammals
Background: One important reproductive characteristic of Mammals is the production of milk to nurse the neonate. In order to better understand the evolution of milk we have investigated gene expression in milk cells from monotremes which are the most ancient representative of the mammalian lineage. Materials and Methods: Using a milk cell cDNA sequencing approach we characterise milk protein se...
متن کاملP-33: Expression of Toll-Like Receptor 2-3 Genes in Human Sertoli Cells
Background: Toll-like receptors (TLRs) constitute a major part of innate immunity, which can distinguish pathogen associate molecular pattern. Sertoli cells create a special immunological niche that protects somniferous tubules from auto antigens and pathogens. These cells are the only somatic cells in somniferous that protect testis cells against pathogens. The purpose of this study was to eva...
متن کاملP-34: Expression of Toll-like Receptor2-3 Genes in Sertoli Cells of Patients with Azoospermia
Background: Toll-like receptors (TLRs) constitute a major part of innate immunity, which can distinguish pathogen associate molecular pattern. Sertoli cells create a special immunological niche that protects somniferous tubules from auto antigens and pathogens. These cells are the only somatic cells in somniferous that protect testis cells against pathogens. The purpose of this study was to eva...
متن کاملDevelopmental Evolution: Torso — a Story with Different Ends?
The Torso pathway patterns the ends of the Drosophila embryo. Now, it has been found to control axis elongation in the short germ insect Tribolium. This result raises the issue of the ancestral function of the Torso pathway and its evolution.
متن کاملDev119065 1..12
Mesoderm formation and subsequent anterior-posterior (A-P) axis elongation are fundamental aspects of gastrulation, which is initiated by formation of the primitive streak (PS). Convergent extension (CE) movementsandepithelial-mesenchymal transition (EMT)are important for A-P axis elongation in vertebrate embryos. The evolutionarily conserved planar cell polarity (PCP) pathway regulates CE, and...
متن کاملذخیره در منابع من
با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید
برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید
ثبت ناماگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید
ورودعنوان ژورنال:
- Current Biology
دوره 26 شماره
صفحات -
تاریخ انتشار 2016